앞으로 정리를 목표로 하고 있는 논문이나 방법론들을 정리하고자 합니다
- 실용적인 AI
- Noisy Student : https://kmhana.tistory.com/33?category=838049
- Meta Pseudo Label : https://kmhana.tistory.com/33?category=838049
- Out-of-Distribution Detection :
○ A Baseline for Detecting Misclassified and OOD Examples in NN ( https://arxiv.org/abs/1610.02136 )
○ ODIN (https://arxiv.org/abs/1706.02690)
○ Training Confidence-calibrated Classifiers for OODD Samples ( https://arxiv.org/abs/1711.09325 )
○ Deep anomaly detection with outlier exposure ( https://arxiv.org/abs/1812.04606 )
○ Using SSL Can Improve Model Robustness and Uncertainty ( https://arxiv.org/abs/1906.12340 )
- 딥러닝을 위한 가이드
- BERT
- 추천도 받아요!
- 발전중인 AI - 추천
- DNN for YouTube Recommendations ( 링크 )
https://kmhana.tistory.com/36?category=882777
- https://arxiv.org/pdf/1707.07435.pdf (추천 시스템에서의 딥러닝 Survey)
- Graph convolutional neural networks for web-scale recommender systems
- DeepFM ( https://arxiv.org/abs/1703.04247 )
- Deep Interest Network for Click-Through Rate Prediction ( https://arxiv.org/abs/1706.06978 )